The aim of this PgCert is to provide students with an understanding of the fundamentals of military electronic systems used in communications and sensors.

Overview

  • Start dateSeptember
  • DurationPgCert: up to 11 months full-time, up to two years part-time
  • DeliveryLectures, laboratory demonstrations and tutorials
  • QualificationPgCert
  • Study typeFull-time / Part-time
  • CampusÂãÁÄÖ±²¥ at Shrivenham

Who is it for?

The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an electronic warfare environment.

Why this course?

A Military Electronic Systems Engineering graduate achieves a high level of understanding and detailed knowledge of military communications and sensor systems with particular regard to electronic warfare. In addition, the MSc course enables the student to carry out an in-depth investigation into an area of electronic warfare to further enhance their analytical capability. Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team.

A comprehensive suite of visits to industrial and services establishments consolidates the learning process, ensuring the taught subject matter is directly relevant and current. Some visits are restricted to Five Eyes nations only (i.e. Aus/Can/UK/US/NZ). Please contact us for more information.

Course details

The PgCert will comprise six core modules accumulating 60 credits; after successful completion the award of PgCert Military Electronic Systems Engineering: Foundations is available.

The MSc/PgDip taught phase comprises 10 compulsory modules and a choice of either Information Networks and Advanced Radar, or Aeronautical Engineering Parts 1 and 2.

MSc students must complete a taught phase consisting of 12 modules, followed by an individual dissertation in a relevant topic. PgDip students must complete a taught phase consisting of 12 modules. PgCert students must complete a taught phase consisting of six specified modules.



Course delivery

Lectures, laboratory demonstrations and tutorials

Modules

Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.


Course modules

Compulsory modules
All the modules in the following list need to be taken as part of this course.

Electromagnetic Propagation and Devices

Aim

    To provide you with an understanding of electromagnetic propagation, antennas and devices relevant to military sensor, communications and electronic warfare systems.

Syllabus
    • Course introduction: course structure, aims and objectives,
    • Information resources: computer centre, library, information retrieval,
    • Propagation: radio propagation, reflection, refraction, multipath, fading, attenuation, ionosphere propagation, troposcatter, anomalous propagation,
    • Antennas: fundamental antenna concepts and definitions; impedance match, radiation patterns, directivity, gain, polarization, axial ratio, EIRP, effective aperture, noise temperature, etc.
    • Overview of antenna types for communications and radar applications including wire antennas, aperture antennas, reflector antennas, low profile and microstrip antennas,
    • Antenna arrays: introduction to phased array theory, types of antenna array, feed network design, beam steering and radiation pattern shaping,
    • Electromagnetic devices: high power tubes including magnetron, coaxial magnetron, Klystron, Extended Interaction Klystron and Travelling Wave Tube Amplifier,
    • Guided waves: waveguides, coaxial lines, microstrip and other RF planar transmission line structures,
    • RF and microwave power dividers, combiners and couplers active solid-state devices: RF diodes and transistors and their application in amplifiers and oscillators, ferrite non-reciprocal devices (circulators and isolators),
    • PIN diode switches, modulators and phase shifters.
Intended learning outcomes

On successful completion of this module you will be able to:

  • Describe the principles of operation and characteristics of antenna sensors and electromagnetic system components and recognise how they may be used in a modern military communication or EW system,
  • Identify and explain the various models of propagation of electromagnetic waves in free space and transmission lines,
  • Analyse and evaluate the performance of electronic warfare system components,
  • Assess the propagation of electromagnetic signals in physical environments,
  • Design antenna elements and develop phased arrays performance models.

Signal Processing, Statistics and Analysis

Aim

    To provide you with an understanding of the subjects supporting the specialist modules and to provide you with the essential signal analysis and statistical tools used in the course.

Syllabus
    • Statistics and Noise: Probability, random variables, probability distributions, covariance, correlation. Noise sources, noise bandwidth, noise figure, noise temperature. Cascaded networks. Mathematical representation of noise,
    • Analogue and Digital Signal Processing 1: Analogue methods used to describe, analyse and process signals and the behaviour of systems: Fourier and Laplace transforms, correlation and convolution, impulse response and transfer function,
    • Analogue and Digital Signal Processing 2: Matched filters, the z-transform. Advantages/ disadvantages of DSP, sampling and quantisation, digital filters, DFT and FFT, DSP applications in communications and radar,
    • Decision Theory: Hypothesis testing, probabilities of false alarm and detection, Bayesian systems, error probability and bit error rate, receiver operating characteristics. Bit-error rate lab demo.
Intended learning outcomes
On successful completion of this module you will be able to:
  • Describe the signal processing methods commonly encountered in sensor, communications and EW systems,
  • Evaluate the effect of randomly varying signals on the decision processing in sensor and communication systems,
  • Identify and analyse signal and noise waveforms commonly encountered in communications, sensor and electronic warfare systems in the time and frequency domains,
  • Analyse the detection performance of such systems.

Electro-Optics and Infrared Systems 1

Aim

    To introduce the you to the field of EO/IR technology and give an understanding the underlying principles. To give an appreciation of the likely future advances in the technology and the importance of EO/IR technology in the wider defence system.

Syllabus
    Simple radiometry and power calculations, signature generation (solid and gaseous), contrast, atmospheric effects, optical systems, detector type (thermal, photon, one and two dimensional arrays, fibre sensors), cooling requirements, detector performance characteristics, simple electronic processing, display options, EO/IR seeker systems, countermeasures (including stealth) and counter-countermeasures, digital image processing.
     

     

Intended learning outcomes

On successful completion of this module you will be able to:

  • Describe EO/IR systems and the underlying principles and technology,
  • Analyse the significance of the EO/IR system in the defence context,
  • Assess the performance of EO/IR systems.

MES-CP - Communications Principles

Aim

    To provide you with an understanding of the concepts and techniques employed in modern communication systems.

Syllabus
    • Introduction: Transmitter and receiver communications system model,
    • Voice source coding: Pulse code modulation, delta modulation, vocoders, demonstrations,
    • Analogue modulation: Amplitude modulation, DSB/SSB. Frequency modulation, demonstrations,
    • Digital modulation: ASK, FSK, PSK, DPSK, QPSK, Offset QPSK, MSK, QAM, demonstrations,
    • Communications channel: Multipath effects, fading and diversity, Egli and Murphy,
    • Receivers: superheterodyne systems, balanced and unbalanced mixers, frequency synthesisers,
    • Link budget analysis.
Intended learning outcomes

On successful completion of this module you will  be able to:

  • Identify the main functions of each of the component blocks in a communications system model, deriving suitable values for each of the system parameters,
  • Describe the principles, implementation and theoretical background of the principal modulation schemes employed in communication systems,
  • Evaluate the effects of a communications channel on a transmitted signal in terms of attenuation, time, frequency and phase dispersion,
  • Analyse the performance of a communication system based on a link budget, using a standard propagation model,
  • Propose a suitable communications architecture to meet a required specification given a particular application.

Radar Principles

Aim

    To provide you with an understanding of the fundamental principles of radar, allowing you to relate this to the design and analysis of radar systems.

Syllabus
    • Introduction: comparison with other sensors, frequency bands, relationship between size, wavelength and range, target data, historical notes,
    • Radar detection theory: radar range equation, Pd, Pfa and SNR relationships, FAR, No. hits, Integration (quadrature detection),
    • Pulsed Radar Parameters: PRF, pulse width, duty ratio, peak and average powers, min range, eclipsing, max unambiguous range, low PRF, spectrum of pulsed radar, signal bandwidth, matched reception, range resolution. Search radar application,
    • Losses: effect of clear air, precipitation, multipath; Losses associated with radar system, including the antenna (beam-shape loss),
    • CW and FM ranging: The Doppler effect, Doppler sensing, clutter rejection, Doppler filtering/velocity gating. Two phase linear saw-tooth modulation, ranging, effect of Doppler, velocity and range measurement. Missile seeker,
    • Radar cross-section: principal factors; surface reflection effects; forms of scattering; echo mechanisms; variation of RCS with angle; typical values; Swerling models,
    • Pulse compression: frequency coding (FMOP); Phase coding (PMOP); matched filtering; range and velocity resolution; Compressed pulse width; Range-velocity coupling,
    • Clutter: surface and volume backscatter coefficient; spatial and temporal variation; estimation of clutter return and signal-to-clutter ratio for volume and surface clutter; statistical description for clutter; clutter spectrum and de-correlation time,
    • CFAR: Constant false alarm rate systems; Clutter statistics and CFAR performance,
    • Pulse-doppler radar: principle of operation; clutter spectrum; characteristics of HPRF and MPRF systems; FMICW in range measurement; multiple PRFs in range measurement. Airborne early-warning radar: requirements; design drivers and solution; typical parameters. Battlefield surveillance radar: requirements; system design; unambiguous range and velocity measurement,
    • MTI radar: System diagram; clutter rejection by single and double delay line cancellers; blind speed,
    • GMTI: MTI from an airborne platform, target measurement accuracy in range and in angle; clutter Doppler spread Tracking Radar. Monopulse and conical scan angle- trackers; range and velocity gates for range and Doppler tracking; angle-tracking errors; track-while-scan systems; continuity tracking synthetic-aperture radar: Cross range resolution, unfocussed SAR, focussed SAR, array length, array processing, resolution, Doppler Beam
Intended learning outcomes

On successful completion of this module you will be able to:

  • Analyse radar detection performance in noise and clutter, relating these principles to conventional radar system design,
  • Assess the performance and identify particular operational advantages of modern multi-function radar and SAR systems Skills and Other Attributes,
  • Critically assess the detection performance of a radar system, given its design parameters,
  • Produce a viable radar system design, given a suitable specification of the required radar performance,
  • Generate and analyse radar waveforms and target echoes with MATLAB.

Communications Systems

Aim

    To provide the you with an understanding of how modern military and commercial communications systems utilise the principal techniques taught during the communications principles module.

Syllabus
    • Multiplexing and multiple access: FDM, TDM, statistical multiplexing, multiple access methods FDMA, TDMA and CDMA,
    • Fibre-optic communications,
    • Error correction codes: Block, convolutional and trellis coding. LDPC and Turbo codes,
    • Wideband multicarrier techniques: Spread spectrum techniques, OFDM. MIMO systems,
    • Cryptography: Terminology, secret key and public-key systems, authentication, key exchange,
    • GSM: 1G and 2G cellular radio systems. GSM system architecture, signalling, framing and frequency bands,
    • GPRS and EDGE: Enhancements to GSM. 3G systems and signalling,
    • 4G systems and signalling, 5G developments,
    • HF systems. Scatter-based systems,
    • Software Defined Radio,
    • Satellite communications,
    • GPS. System description,
    • Military Communications Systems.
Intended learning outcomes

On successful completion of this module you will be able to:

  • Assess and evaluate the modern communications systems studied in terms of their performance in a hostile environment,
  • Model and analyse the performance of key components within modern communication systems,
  • Relate the performance of a modern military communication system to its design characteristics.

Your career

This course is typically a requirement for progression for certain engineering and technical posts within UK MoD.

Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team either in the military or in the defence industry. 

How to apply

To apply for this course please use the online application form.